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INTRODUCTION

The necessity to reduce greenhouse gas 
emissions is driving the rapid growth of renewable 
energy sources in generation sector of power 
systems [1]. Among various renewable energy 
resources, the large-scale Run-Of the-River 
(ROR) power plants has become more mature. 
The 22 MW Mamquam and 25 MW Skookum 
ROR plants in Canada, 13 MW Yugur power 
plant in China, 42 MW Brescia in Italy and 30 
MW Yasouj plant in Iran, are only some examples 
of installed ROR generation units around the 
world. With cascading the single ROR plants, it 
is possible to deliver the generated power to the 
transmission system. 

Variability and uncontrollability in 
renewable-based farms including wind, solar 

and ROR plants generations as well as being 
unable to accurately predict their productions 
are of the biggest obstacles for efficient use of 
these energies [2–5]. Moreover, conventional 
approaches become unable to accomplish power 
system studies in presence of renewable energies. 
These challengeable concerns are placed at the 
point of great consideration-demanding matters 
in the cases of wind and also PV farms integration 
in power systems [2–7]. However, to the authors’ 
knowledge, in past works, the operation studies 
of a power system containing ROR units are not 
performed, and so it can be used from the similar 
researches performed on the wind and solar. For 
reserve determination of power system containing 
wind and farms, a vast number of studies 
have recently been presented in the published 
papers. The methods based on the deterministic 
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introduced. In [15], the ROR power plant with n 
units, each with m penstocks, can be represented 
as a single unit with m×n penstocks. Here, the re-
liability model of a ROR plant considering both 
component failure rate and output power vari-
ability suitable for operation studies is presented. 
Due to short time period of operation studies, 
only one component failure is considered. Thus, 
only failures of power transformer or failure of an 
element associated to one of m×n branches are 
investigated. Failure of power transformer leads 
to zero production of ROR plant and failure of an 
element associated to one of m×n branches leads 
to the zero production of associated branch. Thus 
the reliability model of a ROR plant would be a 
shown in Figure 1. 

In this model the generated power of a branch 
is considered to be C and since the time horizon 
of the operation studies is short, it is impossible 
to repair or replace the failed components. As a 
consequence, the repair and replacement rates of 
these components are neglected in these studies. 
Utilizing the historical data of ROR production 
as the input data, the number and probability of 
some appropriate states associated with the ROR 
generation levels, can be determined using of the 
fuzzy C-means clustering method (FCM) [15]. 
Once the probabilistic model of ROR plant are 
obtained employing the FCM, the Markov model 
of a ROR plant consisted of m×n parallel branch-
es can be extracted which is shown in Figure 2. In 
this figure the number of clusters associated to the 
uncertainty nature of water flow is considered to 
be h. The transition rates between different states 
can be determined from historical data of ROR 
generation power.
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Fig. 1. The reliability model of a ROR plant (only 

component failure is considered)

approaches [7] are not able to use for renewable-
based power systems. In contrast, a branch of 
probabilistic techniques have been proposed to 
assess the amount of capacity reserve in a more 
reliable way [8]. All these techniques, which are 
based on the PJM approach, can be introduced 
as efficient methods to evaluate short-term risks. 
References [9–10] emphasize that determining 
the optimal amount of operating reserve in 
presence of large-scale wind farms is a complex 
task. In [11], normal distribution is used for wind 
farm modelling and the SR value is obtained 
based on the concept of reliability cost-worth. In 
[12], scenario making method is applied for wind 
farm uncertainty modelling. References [13,14] 
employ Monte Carlo chronological Simulation 
(MCS) method to evaluate the operating reserve 
of power systems with high penetration level of 
renewable energies. 

This paper introduces an analytical model to 
evaluate the spinning reserve (SR) requirements 
of generating systems based on the well-being 
approach indices, in presence of ROR pants. The 
main idea of this paper is to establish a probabilis-
tic multi-state model for ROR plants generations 
to be used in power system operating reserve stud-
ies. A suitable clustering approach, fuzzy c-means 
clustering method (FCM), is employed to find the 
most appropriate states associated with renew-
able-based units. The probability, departure rates 
and frequency of each state are obtained using the 
historical water flow data. The proposed method 
is applied to two various test systems, i.e., RBTS 
and IEEE-RTS. The rest of the paper is organized 
as follows. The multi-states analytical models as-
sociated with ROR plants are introduced. In the 
next section, is mainly devoted to the proposed 
spinning reserve assessment procedure based on 
the well-being approach indices. The other part, 
is comprised of three parts and involves in the im-
plementation process of the proposed technique 
through two case studies. The conclusion is sum-
marized in the final section. 

PROBABILISTIC ANALYTICAL MODEL OF 
ROR UNITS

This section is thoroughly devoted to the pro-
posed probabilistic models of ROR plants. In [15] 
the structure of a typical ROR power plant and its 
reliability model suitable for adequacy studies are 
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SPINNING RESERVE ASSESSMENT 
PROCEDURE

As mentioned earlier, the PJM method has 
shown its inevitable role in power system operat-
ing reserve evaluation procedure. To consider the 
intrinsic features of ROR plant generation in this 
method and to establish an effective method com-
patible with the nature of these energies, a new 
modified PJM method is presented in this section. 
It has been assumed that the reliability model of 
the conventional units is two-state model with 
up and down states. The probability of the down 
state in this model is obtained Eq. (1). where, λ is 
the failure rate of the unit (occ./hr) and T is the 
lead time.

( )P down Tλ= × (1)

The discussed models for ROR plant in the 
previous section are considered as the reliability 
models of these renewable-based units. Based 
on the PJM method, all units are supposed to be 
in the up states at time t=0 [16]. At the speci-
fied lead time, the probabilities of up and down 
states associated with all conventional units are 
calculated and the equivalent generation model 
is developed. The ROR plant multi-state model, 
however, can be involved in the PJM method by 
matrix multiplication technique as shown in (2). 
In this approach, the lead time T is divided into 
several steps with Δt duration.

( / )( ) (0).[ ] T tP T P STPM ∆= (2)

Where, P(T), P(0) and STPM respectively 
are the probability matrix of states at lead time 
T, probabilities of the states at the beginning of 
the studies which is extracted from the initial 
water flow data, and the stochastic transitional 

probability matrix. As the probabilities of vari-
ous states are calculated, the multi-state models 
of ROR plants can be utilized to evaluate the 
Capacity Outage Probability Table (COPT) of 
these units for the predefined period of studies. 
The computed COPT is then convolved with the 
load model to deduce the well-being approach in-
dices [17] including Healthy probability (P(H)), 
Marginal probability (P(M)), Unit Commitment 
Risk (UCR), SR, Peak Load Carrying Capability 
(PLCC) and Increase in PLCC (IPLCC) as de-
fined below:

Healthy state: In this state, the generation ca-
pacity is more than the demand and the reserve is 
adequately high and is more than the capacity of 
the largest unit.
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Marginal state: In this state, the generation 
capacity is more than the demand, but the reserve 
is not adequately high and is less than the capacity 
of the largest unit.
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Risk state: In this state, the generation 
capacity is less than the demand.

1 ( ) ( )UCR P H P M= − − (5)

Spinning Reserve: For defined load, the gen-
eration capacity is increased so that, the well-be-
ing approach indices is satisfied. The difference 
between generation capacity and demand is cal-
culated as the spinning reserve. 
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Fig. 2. The reliability model of a ROR plant
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Peak load carrying capability: For specified 
generation capacity, the load is increased so that, 
the well-being approach indices is satisfied.

Increase in peak load carrying capability: 
For addition of a new generation unit, the pre-
vious load is increased so that, the well-being 
approach indices is satisfied. The difference be-
tween two loads is calculated as IPLCC.  

NUMERICAL RESULTS

In this section, two well-known test systems, 
the RBTS and the IEEE-RTS, with addition of 
some ROR units are investigated. The reliability 
models of the new ROR units based on the pro-
posed method are determined and the operation 
studies of these two test systems are performed 
and various power system well-being approach 
indices are calculated. Numerous analyses are 
then performed and impacts of lead time varia-
tion, peak load, scheduled capacity, penetration 
level of renewable resources and initial water flow 
on the system operation studies are investigated.

THE RBTS CASE STUDY

In this part, the RBTS is designated as a test 
system to examine operating reserve studies in 
presence of ROR plants. The original RBTS gen-
erating units data with 240 MW installed capac-
ity and their priority loading order are itemized in 
Table 1 [18].

For the original RBTS, the values of UCR 
index versus various lead times and peak loads 
are calculated and delineated in Figure 4. In this 
study, all units are committed which their equiv-
alent scheduled capacity is 240 MW. As shown 
in this figure, any increment in peak load or lead 
time aggravates the UCR index value. It is also 
deduced that the UCR index follows a discrete 
nature which is arisen from the individual gener-

ating unit capacities. To facilitate the conceptual 
understanding about the renewable-based units’ 
impacts on the amount of SR requirements, the 
following cases are defined and put under inves-
tigation. The original RBTS is regarded as Case 
1, in Cases 2, 3 and 4, respectively, a 30 MW 
conventional unit with failure rate of 5 f/yr, a 30 
MW ROR unit with low initial water flow and a 
30 MW ROR plant with high initial water flow 
are added to the original RBTS. As a notification, 
the added conventional unit in case 2 is scheduled 
as the last unit. In the other cases, the renewable 
based units are scheduled as the first units due to 
their free operating costs features.

The 30-MW ROR power plant with 5 single 
ROR units is considered to install on Sheshpir 
River in the Pars Province of Iran. Each single 
unit is composed of 4 penstock sets, that the ca-
pacity of each penstock with 2.2m3/s water flow 
would be 1.5 MW. The reliability data of com-
ponents of the power plant are given in [15]. The 
one-year water flow data associated to Sheshpir 
River in 2013 [15] is utilized for reliability model 
extraction of this ROR unit. The FCM technique 
results in 8 clusters, and the reliability model of 
the ROR unit, suitable for operation studies, is ex-
tracted which is shown in Figure 3.

The STPM of this model is as:

1616
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Table 1. The RBTS units data and their priority load-
ing order

Cap. 
(MW) Type No. of 

units
Priority 
order

Failure rate 
(occ./yr)

40 Hydro 1 1 3
20 Hydro 2 2–3 2.4
40 Thermal 2 4–5 6
20 Thermal 1 6 5
10 Thermal 1 7 4
20 Hydro 2 8–9 2.4
5 Hydro 2 10–11 2
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87]0[ ×=C (9)

77]0[ ×=D (10)

The well-being approach indices for these 
four cases considering different peak loads at 
lead time of 4 hour are presented in Tables 2 to 5. 
As expected and can be traced from these tables, 
addition of new generating units reduces the 
UCR and increases the healthy probability. The 
conventional unit, however, more efficiently im-

proves the UCR index in compare to the renew-
able-based units.

Besides, the impacts of initial water flow on 
well-being approach indices are the other im-
portant thing which can be deduced from the at-
tained results. Only when the water flow at the 
beginning of the studies is high, the ROR unit 
can play a key role in well-being approach im-
provement. The amount of required spinning 
reserve to satisfy the well-being approach indi-
ces (UCR<0.0001, P(H)>0.985) versus different 
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Fig. 4. The RBTS UCR index value versus different peak loads and lead times
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Fig. 3. The reliability model of 30 MW ROR plant
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peak loads are calculated and shown in Table 6. 
In this study, system lead time is considered to 
be 4 hours. As can be traced in this table, for 
each system load level, the conventional units are 
added to the system based on their priority order. 
This procedure is continued till the well-being ap-
proach indices reach to a permissible level. In a 
specified load level, the spinning reserve is cal-
culated as the difference between the scheduled 
conventional units and the peak load level. It can 
clearly be seen from this table that with addition 
of renewable-based units, the required spinning 
reserve values decrease. Thus the operation costs 
of the power system including renewable resourc-
es would be lower than that of traditional cases. It 
is also concluded from the table that the required 
spinning reserve for cases with ROR units with 
high water flow decreases the required spinning 
reserve significantly in compare with the low 
water flow conditions.

The PLCC associated with different cases sat-
isfying well-being approach indices considering 
various lead times are evaluated and shown in Ta-
ble 7. The capability of the power system to sup-
ply loads increases by adding some renewable-
based units to its generation sector. However, this 
improvement is affected by the initial conditions 
of the water flow and value of the lead time. An-
other valuable index, i.e. IPLCC, is calculated 
and analysed for different cases to more accu-
rately study the impacts of renewable-based units 
in compare to conventional ones. In so doing, the 
peak load of the system can be increased as far as 
the well-being approach indices remains in per-
missible level. The attained results are illustrated 
in Table 8. As it is clear from the table, the ad-
dition of ROR plants with low initial water flow 

Table 7. PLCC (MW) of different cases

Lead time Case 1 Case 2 Case 3 Case 4

1 h 200 229.9 200.4 223.3

4 h 190 210 199.9 201

Table 8. IPLCC (MW) of different cases

Lead time Case 2 Case 3 Case 4

1 h 29.9 0.4 23.3

4 h 20 9.9 11

Table 6. Spinning reserve values
Peak load 

(MW) Case 1 Case 2 Case 3 Case 4

160 50 50 50 50
170 60 70 60 50
180 55 60 50 45
190 - 70 50 45
200 - 70 45 40

Table 4. Well-being states probabilities of Case III
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

160 0.998557 0.001443 7.92E-07
170 0.998399 0.001601 8.80E-07
180 0.996941 0.003056 3.31E-06
190 0.996351 0.003645 4.26E-06
200 0.156966 0.841591 0.001443
210 0.065154 0.933244 0.001601
220 0.030933 0.966007 0.003059

Table 5. Well-being states probabilities of Case IV
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

160 0.999961 3.86E-05 2.09E-08
170 0.999957 4.33E-05 2.35E-08
180 0.999908 9.23E-05 9.30E-08
190 0.998239 0.00176 1.02E-06
200 0.976286 0.023675 3.87E-05
210 0.973573 0.026384 4.33E-05
220 0.966317 0.03359 9.23E-05
220 0.966317 0.03359 9.23E-05

Table 2. Well-being states probabilities of Case I
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

160 0.993149 0.006836 1.51E-05
170 0.993137 0.006848 1.52E-05
180 0.986562 0.013378 6.04E-05
190 0.984759 0.015168 7.28E-05
200 0 0.993149 0.006851
210 0 0.993137 0.006863
220 0 0.986562 0.013438

Table 3. Well-being states probabilities of Case II
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

160 0.999969 3.08E-05 4.52E-08
170 0.999924 7.57E-05 1.44E-07
180 0.999897 0.000103 2.75E-07
190 0.993129 0.006855 1.52E-05
200 0.990869 0.0091 3.08E-05
210 0.984309 0.015615 7.59E-05
220 0.982511 0.017386 0.000103
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(Cases 3) cause no considerable improvement in 
load carrying capability of the power system in 
lead time 1 hour. However, it is not the case for 
high water flow conditions.

THE IEEE-RTS CASE STUDY

In this subsection, the IEEE-RTS is consid-
ered as a test system to investigate the impacts 
of different penetration levels of renewable re-
sources on the system operation studies. The 
detailed data associated with this test system is 
presented in [19]. The UCR value for different 
ROR energies penetrations are evaluated and il-
lustrated in Figures 5 and 6. The lead time of this 
study is considered to be 4 hour. As it can be seen 

from these figures, although the addition of new 
renewable-based units improves the system risk 
level, this improvement at high penetration levels 
decreases.

Well-being approach indices associated to 4 
cases including: the IEEE-RTS, IEEE-RTS and a 
30 MW conventional unit with failure rate of 5 f/
yr, IEEE-RTS and a 30 MW ROR unit with low 
initial water flow, IEEE-RTS and a 30 MW ROR 
plant with high initial water flow are calculated 
and presented in Tables 9 to 12. As can be seen in 
these tables, the well-being approach indices are 
improved when new unit is added to the system. 
However, the improvement associated to the con-
ventional unit is more than the ROR units espe-
cially with low initial water flow. It is due to the 
uncertainty nature of these renewable units.

Fig. 6. The high water flow ROR energy impacts on UCR value

Fig. 5. The low water flow ROR energy impacts on UCR value
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In this stage the PLCC of different cases is de-
termined and presented in Table 13. For PLCC de-
termination the UCR is considered to be less than 
0.0001 and the healthy state probability is consid-
ered to be more than 0.985. Another valuable in-
dex, i.e. IPLCC, is determined and presented for 
different cases in Table 14, to more compare the 
impacts of conventional versus renewable units 
on the operation studies of the power system.

CONCLUSIONS

This paper introduces an analytical approach 
for operating studies and reserve determination of 
power systems with high penetration level of ROR 

resources. For this purpose, a comprehensive reli-
ability model of ROR units considering both as-
sociated components failure rates and uncertainty 
nature of the output power resulted from the vari-
ability in the water flow is developed and multi-
state model for these resources is obtained based 
on the FCM approach. Then, the PJM method is 
modified and these renewable resources models 
are used for determining well-being approach in-
dices. Because of the uncertainty nature of ROR 
plant, it is recommended to determine the reserve 
value based on the well-being approach indices. 
For better representation of the proposed tech-
nique, two well-known reliability tests including 
RBTS and IEEE-RTS are considered and different 
number of 30 MW Sheshpir ROR power plants is 

Table 11. Well-being states probabilities of Case III
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

2500 0.999653 0.000346 1.13E-06

2600 0.999103 0.000895 2.58E-06

2700 0.988901 0.011057 4.15E-05

2800 0.987631 0.012316 5.31E-05

2900 0.959948 0.039704 0.000347

3000 0.895556 0.103547 0.000897

3100 0 0.988901 0.011099

Table 12. Well-being states probabilities of Case IV
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

2500 0.999702 2.97E-04 7.85E-07

2600 0.99939 6.09E-04 1.88E-06

2700 0.988995 1.10E-02 4.08E-05

2800 0.98834 1.16E-02 4.71E-05

2900 0.960391 0.039311 0.000298

3000 0.930632 0.068758 0.00061

3100 0 0.988995 0.011005

Table 13. PLCC of different cases

Lead time Case 1 Case 2 Case 3 Case 4

1 h 2954 2983 2960 2982

4 h 2941 2968 2949 2956

Table 14. IPLCC of different cases

Lead time Case 2 Case 3 Case 4

1 h 29 6 28

4 h 27 8 15

Table 9. Well-being states probabilities of Case I
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

2500 0.999644 0.000355 1.19E-06

2600 0.999083 0.000914 2.62E-06

2700 0.98889 0.011068 4.16E-05

2800 0.987565 0.012381 5.37E-05

2900 0.95992 0.039724 0.000356

3000 0.893082 0.106001 0.000917

3100 0 0.98889 0.01111

Table 10. Well-being states probabilities of Case II
Peak load 

(MW)
Healthy state 

probability
Marginal state 

probability
Risk state 
probability

2500 0.999703 2.96E-04 7.76E-07

2600 0.999396 6.02E-04 1.87E-06

2700 0.988998 0.010961 4.08E-05

2800 0.988364 0.011589 4.69E-05

2900 0.960401 0.039302 2.97E-04

3000 0.931451 0.067946 6.04E-04

3100 0 0.988998 0.011002



9

Advances in Science and Technology Research Journal  Vol. 11 (4), 2017

added to these systems. For analytical evaluation 
of the Sheshpir ROR power plant impacts on the 
power system operation studies, a 16-state reli-
ability model based on the proposed approach is 
obtained. Several indices including healthy state 
probability, marginal state probability, unit com-
mitment risk, spinning reserve, peak load carry-
ing capability and increase in peak load carrying 
capability for these systems are determined based 
on the proposed technique. Furthermore, numer-
ous sensitivity analyses are performed and it is 
concluded that the presence of renewable resourc-
es can improve the reliability of the power system 
in operation studies. It can be concluded from the 
numerical results, addition of ROR power plants 
to the power system results in the increase in the 
healthy state probability and also decrease in the 
system risk. It can be seen from the tables, with 
addition of the ROR power plants to the system, 
the peak load of the system can be increased so 
much that the reliability criteria is met. Improve-
ment in the indices significantly increases as the 
initial water flow increases. This result highlights 
the importance of availability of high water flow 
in the performance and benefits of large ROR 
power plants. It is also concluded that due to the 
uncertainty nature of the water flow resulted in 
the de-rated states in the reliability model of these 
plants, the reliability improvement of renewable 
resources is less than conventional units with the 
same sizes.
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